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Abstract

In this article we revisit the paper by Teunter (2004), appeared in Computers and Industrial
Engineering. For this model Teunter proposed an approach leading to an approximate solution. Here we
propose an optimization procedure, which leads to policies with integer set up numbers in the production

and the remanufacturing facilities i.e. to the optimal policy.
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1. Introduction

Teunter (2004) presented an inventory model, where the stationary demand is satisfied though two
modes. One is by new ordered/produced products and the other by recovered used products which
recovery brings back to ‘as good as new’ condition. All relevant costs i.e. ordering/production and
recovery set up, holding new/recovered items, holding recoverable items are constant. He considers
policies that alternate one production lot with a fixed number R of recovery lots respectively, in short (1,
R) policies and one recovery lot with a fixed number P of production lots, in short (P, 1) policies. In this
class of policies Teunter derived simple closed type formulas for the optimal procurement/production
and recovery lot sizes. These formulas are more general than the ones given in Nahmias and Rivera
(1979) and Koh, Hwang, Sohn and Ko (2002) as they are valid for infinite and finite recovery and
production rates respectively.

The approach used in his analysis is to minimize the total cost function Tt C(Q,.0,), wrt. to the
procurement/production O, and recovery Q. lot sizes, treating them as continuous variables. Treating lot

sizes as continuous variables, in cases where these have to be integer, is common practice in inventory
control literature and really it does not create any problem. He then obtained R, P using equations
connected the above variables. The so obtained values are truncated, if necessary, to the nearest integer

and the so obtained policy is applied. In the case of Teunter’s model the obtained values of 9,, O, are

used to calculate P and R. If the values for R or P are not integers the policy cannot be applied. To
overcome this difficulty, the author suggests suitable modifications. He first truncates the obtained values
of R, P to the nearest integer, greater or equal to one. Next using these values he modifies the initially

obtained values of @, m (1, R) policies and the Q, in (P, 1) policies. The resulting policy can be applied

and the relevant cost is calculated. In this paper we present an approach, which leads directly to the

optimal policy with R, P integers. These values are then used to obtain the lot sizes Q,andQ, and to

calculate the optimal cost.



2. Model

The notation in Teunter’s (2004) model is:

d Demand rate

v i Return fraction (return rate /7 )

p Production rate

¥ Recovery rate

. Ordering (setup) cost per production lot

K, Ordering (setup) cost per recovery lot

h, Holding cost per recoverable item per time unit
h, Holding cost per serviceable item per time unit
Qp Production lot size

0, Recovery lot size

2.1. Policy (1,R): One manufacturing against R remanyfacturing opportunities

For this class of policies, the total cost per unit of time is given by:

1C(0,. 0, K,d(1-1) K, A ((1- /)X1-d/p)Q, + f(1-d/r)Q,) . hf(Q,+(1-d/rQ.)

1)
o, 0, 2 2
The variables O, , Q, and R are connected via the relation
RO.(A-1)=0,f. (2)

Teunter minimized TC(Q_, Q,) wrt. O, 0 and using (2) he obtained R. The so obtained R is not in

general integer. To make it integer, he truncates this R to the nearest integer, say fi‘=max{1, [R]},
greater or equal to one and using this truncation, he replaces the initially obtained Q, value by the one

obtained though the relation



Here we shall approach the solution of this problem in a different way.

From (2) we have that:
o, f
=— 3
@ Ra-n &
Replacing this O, into (1) the total cost per unit of time becomes:
_K,d(-f)+RK.d(1- f) (- fX1-d/p) hf, Qf*(A—d/r)h +h)
TC(Q,.R= 0, +0,[ 5 =5 2RA-7) N C)
If we set
A=K d(1- )+ RK,d(1- f)=4, + A,R, where A=K d(1-f)=0 and 4,=K d(1- ()20,
p=h0=N0-d/p) Bf o o SU-dNb+h) G o _SA-dihrh) o o
5 2 2R(1- 1) R 2(1- 1)
we can rewrite 7C( 0,.R) as:
TC(QP,R}=Qi+QP(B+C)- (6)

P

Now the problem becomes: find the minimum of 7C(Q,.R) w.r.t. R and O, . The approach we follow is
first finding the minimum of this function w.r.t. Q,. The minimizing point will be a function of R, say
Q,(R) . Replaces this into the objective function and minimize the objective w.r.t. R.

From (6) we see that TC( Q,.R) is convex in O, and so attains its minimum at

cpve | A _ [4t+R4,
Q"’(R)_\IB+C"\j B+5- @)
R

Substituting O (R) into (6) yields:

TC(Q,(R) .R)= 2\/4B+ A4,C, +AZBR+%. (8)

Since R is integer we use the difference function
ATC(Q,,R)=TC(Q,,R)-TC(Q,,R-1), R>2

for the location of optimal R which in our case is:



g 4G
2(4,B RR- 1))

AIC(Q;,R)zIC(Q;,R)-TC(Q;,R—I)—
\/AIB-!-AZC ~:—1‘K’AZB+"4"l \/4B+A2C +(R- I)AZB+ A'C

®

From (9) we see that if %s 2, then ATC(Q,,R) =0 for any R>2 and the optimum is at R" =1.

If this is not the case, then there always exists a R*>2 such that AT C(Q;,R)<0for all R<R and
ATC(Q;,R) >0 for allR>R". Simple algebra on these inequalities gives that this R’ satisfies the double
inequality

R'(R‘—1)<-‘§'2%£R'(R‘+1), R >2. (10)

In case that R'(R’ +1) =%‘2—%—, we have two equivalent solutions and we agree to keep the smallest one.

The integer value of R* obtained from (10), is used in (7) to calculate Q; (R) and the resulting policy can

be implemented to give the cost.
We apply this approach to the example proposed by Teunter. The data of the example are:

d =1000, f=0.8, p=5000, »=3000, K,=20, K, =5, b, =2 and h =10.
With these data we have 4, =4000, 4, =1000, B=1.6, C, =12.8 and the cost function is:

4000 +1000R 12.8
TC(QP,RF——Q— G,(1.6+—5).

P

From (10) we get R'=6 and (7) gives O’ =51.75 and finally TC( 0., R y=386.44 . From (3) we find
Q. =34.5. The policy given by Teunter has 0,=53.03, 0/ =35.35 and TC(Q,, R )=386.55. In this

example the deviations for the lot sizes and the total cost are negligible. Computational experience shows
that the two approaches give quite similar results, in case that the exact R obtained using Teunter’s
approach is greater than one. In case that this R is smaller than one the deviations are significant. This is
evident in the examples given in table 1 and suggests that in this case the approximate approach used by

Teunter leads to costs much higher than the optimal.



2.2. Policy (P,1): P manufacturing opportunities against one remanufacturing

The total cost per unit time in this case is:

10(0,.0,)- K,dd-f) Kdf h@-fX1-d/p)g,+f1-d/rQ,) L ha-£ajng, an
Qp Q,- 2 2
and P is fully determined by the lot-sizes via the relation
Qr(]'—f)=Ppr. (12)

Teunter minimized 7C(Q,, 0,) w.rt. Q,, 0,and using (12) he obtained P. The so obtained P is not in

general integer. To make it integer, he truncates this P to the nearest integer, say;’ =max{l, [P]}, greater

or equal to one and using this truncation, he replaces the initially obtained Q. value by the one obtained

though the relation:
0 = PO '
r ]_ _ f
Here we shall approach the solution of this problem in a different way.
From (12) we have that:
1-—
0,= 20-7) (13)

Pf

So using (13), the total cost per unit (11) becomes:

PRA+EY | o B0-SYA-d/p) hfl=d]r) hQ-fdjr)

0. 2Pf 2 2 1. a9

IC(Q, .Py=

If we set

A=PK,df +K,df =P4,+ 4,, where A =K,df >0 and 4,=K,df >0,

p=h0-/PA~d/p) hfQ-dr) hA-fd/r)_B,

2Pf 2 2 P
where B = h (l-f;:’;l—d/P) >0 ande=h’f(12_d/r) Lk —zfd/r) >0 a15)
we can rewrite 7C( 0, ,P) as:



TC(Q, P £-+Q,B- 16)

r

From (16), we see that TC( O, ,P) is convex in O, and attains its minimum at

. A
_P - _—= —_—
Q. (P) \/; (17)
Substituting (17) into (16) yields:
. = 4,5

IC(Q,(P),P)=2,|AB + 4,B, +A]BzP+T. (18)

The difference function
ATC(Q],P)=TC(Q},P)-TC(Q,,P-1), P>2
of TC(Q’,R) shows that:
2(432 - Pgiﬁl))
ATC(Q,,P)=TC(Q.,P)-TC(Q,P-1)= —. (19)
\/431 +4,B,+PAB, + A}B' +\/A,B] +4,B, +(P-1)4B, +i;2fll
Following the same reasoning as previously we can see that if
0< 45 <2
B,

2
then the optimum is atP’=1. If this is not the case, then there always exists a P">2 such

that ATC(Q], P) <0 for all P< P'and ATC(Q',P)=0 for allP> P". Simple algebra on these inequalities

gives that this P” satisfies the double inequality

P‘(P'—l)<%sP'(P'+l), P =2, (20)

2

In case that P*(P" +1) = AZ;:‘ » we have two equivalent solutions and we agree to always take the smallest

2
one.

For the Teunter’s example we have that: 4, =16000, 4, =4000, B =0.2 and B, =3.4. The cost

function is:



TEe G, 10000 4000 6""‘”;* 2 s pea +22).

From (20), we get P'=1 and (17) gives O, = 74.54 and finally 7C(Q’ , P*)=536.66. From (13) we find
that 0’ =18.63 . The policy given by Teunter has 0,=70.71, O} =282.8 and TC(Q;, R' }=1088.9. In this

example the deviations for the lot sizes and the total cost are very significant. Computational experience
shows that the two approaches give quite similar results, in case that the exact P obtained using Teunter’s
approach is greater than one. In case that this P is smaller than one the deviations are significant. This is
evident in the examples given in table 2 and suggests that in this case the approximate approach used by

Teunter leads to costs much higher than the optimal.

3. Conclusion

In this paper we propose a solution method for Teunter’s (2004) model which leads to integer
values for the parameters R, P in the set of policies (1, R) and (P,1) and subsequently to the optimal
policy. This is an exact approach and comparing the results obtained, to those given by Teunter’s
approximate method, we see that in some cases Teunter’s algorithm performs very well, while in other

cases the cost deviations from the optimal are significant and his method should not be applied.
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